
Implications of System
Errors in the Context of
Numerical Accuracy

Mike Heroux, Patty Hough

Sandia National Laboratories

Vicki Howle

Texas Tech University

Questions for Applications

What science/computing are you doing now,
focused on computing more than science?
What are you worried about, particularly thinking
of future grand challenge science?
What errors/faults do you want to be aware of/
notified of?
What do you want from tools/technologies?
What have you done about it so far?
What are you planning to do?
What do you think is reasonable for apps people to
do?

We develop numerical algorithms to support
PDE-based simulations

For stockpile stewardship
Thermal

Mechanical

Structural dynamics

…

For science applications
Chemically reacting flow

Materials

…

Numerical algorithms we
represent

Linear solvers

Optimization

Examples of DAKOTA Applications: (from left) ICF
Capsule Robust Design, Fireset Thermal Surety,

Radar Support Structural Design

This visual depicts 20-degree periodic wedge simulation
in 3-D of z-pinch liner implosion. Trilinos/ML’s H(curl)

multigrid magnetics solver is only viable solution method.

Need evidence of credibility for simulations
supporting high-consequence decisions

Are we getting the right
answer for the right
reason?

As architectures become
more complex,

Implementation becomes
more complicated

Simulation behavior
becomes less predictable

Failures come into play

Need confidence in the
accuracy of our numerical
algorithms

Code
Verification

Code
Verification

DP
Application

DP
Application

Planning Planning

Experiment
Design, Execution

& Analysis
Experiment

Design, Execution
& Analysis

Metrics Metrics

Assessment Assessment

Prediction
& Credibility
Prediction

& Credibility

Document Document

Calculation
Verification
Calculation
Verification

7

6

5

2

4

3

3

8

Code
Verification

Code
Verification

DP
Application

DP
Application

Planning Planning

Experiment
Design, Execution

& Analysis
Experiment

Design, Execution
& Analysis

Metrics Metrics

Assessment Assessment

Prediction
& Credibility
Prediction

& Credibility

Document Document

Calculation
Verification
Calculation
Verification

7

6

5

2

4

3

3

8

From Trucano, et al.
SAND2002-0341

Are numerical algorithms implemented

and functioning properly? Need to start

considering effects of the computing
environment in this assessment.

Hard errors have received the most
attention to date

Hard to miss

Checkpoint/restart
Minimal response

Sufficient if failure rate not too high

Still some open questions
How scalable are current approaches?

Can we predict failures?

Verification for checkpoint/restart?

Fault-tolerant algorithms are more efficient
approaches to addressing hard errors

Includes both “inherently fault-tolerant” and not
Recovery for iterative methods (Langou, et al., 2007)

Meshless methods/chaotic relaxation, FFT (Geist &
Engelmann, 2002)

Asynchronous parallel pattern search (Hough, et al.,
2001)

But sometimes we need guaranteed correctness
Robust algorithms need correct computations

Examples: direct solvers, orthogonal subspaces

And becoming more prevalent are…

Soft errors are becoming more prevalent due
to small features operating at low voltages

“At 8 nm process technology, it will be harder to
tell a 1 from a 0.” (Camp, 2008)

128k-node BlueGene/L: 1 soft error in L1 cache
every 4-6 hours (Ziegler, et al., 1996)

…

Soft errors are scary to apps
Computation proceeds but is wrong

Careful verification required

What if verification has soft errors?

Consider GMRES as an example of how soft
errors affect correctness

Basic Steps
1) Compute Krylov subspace (sparse matrix-vector

multiplies)

2) Compute orthonormal basis for Krylov subspace
(matrix factorization)

3) Compute vector yielding minimum residual in
subspace (linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

More examples in Bronevetsky & Supinski, 2008

Every calculation matters

Small PDE Problem: Dim 21K, Nz 923K.

ILUT/GMRES

Correct computation 35 Iters: 343M FLOPS

Two examples of a single bad floating point op

Description Iterations FLOPS Recursive

Residual Error

Solution Error

All Correct Calcs 35 343M 4.6e-15 1.0e-6

Iter=2, y[1] += 1.0

SpMV incorrect

Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0

Non-ortho subspace

N/C N/A 7.7e-02 5.9e+5

One possible approach is transactional
computation

Database transactions: atomic

Transactional memory: atomic memory operation

Transactional computation:
Designated sensitive computation region
(orthogonalization step in GMRES)

Guarantee accurate computation or notify user

Needs to be coupled with guaranteed data
regions

User-designated reliable data region

Extra protection to improve reliable data storage
and transfer

Examples
Original input data (needed for verification)

Linear solver: A, x, b

Orthogonal vectors for GMRES

More generally, what should application
developers do?

Abandon the assumption that the system can
continue to guarantee reliability and
correctness???
Work with system, system software, middleware,
etc. developers to learn what can be provided and
to develop requirements
Develop a more holistic view of application
development – develop algorithms/applications
suitable for running correctly through failure and
handling multi-threading
Reserve the right to use slower, more reliable
systems

What I would like to see in future fault
tolerance tools and technologies

Integration
Vertical integration across hardware, system software, message-passing libraries,
numerical algorithms, etc.
Integration across platform components (e.g., CPUs, storage, networks, etc.)
Community workshops
Multi-disciplinary development teams

Standards
Influence the MPI 3 standard now
Interfaces for communicating with system components (CIFTS is a good start,
but what if I don’t want to use the FT backbone)

Rigorous failure models
What failures occur and with what probability
Fault tolerance incurs overhead, so I want to manage my risks

Flexible and scalable infrastructure
Scalable alternatives to failure prediction, detection, and recovery techniques for
hard errors
Flexible platform management/scheduling

Test beds
Need to do V&V in the presence of failures (in a controlled setting)
Need to distinguish between behavior resulting from fault and that resulting from
other platform behavior

